Convert the complex number 413i into polar form.


Answer:

2(cosπ3+i sinπ3)

Step by Step Explanation:
  1. 413i=413i×1+3i1+3i[ Rationalizing the denominator ]=4(1+3i)(1)2(3i)2[ Since (a+b)(ab)=a2b2]=4(1+3i)1+3[ Since i2=1]=4(1+3i)4=1+3i
  2. Let, z=1+3i The standard polar form of a complex number is r(cosθ+i sinθ)
    Θ y y' x' x O P(1, √3)
  3. On comparing z with the standard polar form of a complex number, we get,
    r cos θ=1 and r sin θ=3
    Now, r cos θ=1(1)r2 cos2θ=12(2)r sinθ=3(3)r2 sin2θ=32(4) On Adding (2) and (4) we get,
    r2 cos2θ+r2 sin2θ=12+32r2(cos2θ+sin2θ)=1+3r2=4[Since, cos2θ+sin2θ=1]    r=2[Conventionally r>0]
  4. Substituting the value of r in eq (1) and (3) we get,
    cosθ=12 and sinθ=32
    θ=π3
  5. Hence, the polar form of the complex number z=1+3i is 2(cosπ3+i sinπ3).

You can reuse this answer
Creative Commons License