Solve the following pair of linear equations by using cross multiplication. uxvy=wvxuy=1w


Answer:

x=v(vu)(v+u)wvu and y=u(vu)(v+u)wuv

Step by Step Explanation:
  1. The given system of equations can be written as uxvy=w    uxvyw=0vxuy=1w    vxuy(1w)=0
  2. By cross-multiplication, we have xvuw(1w)=yuvw(1w)=1uvvuxv(1w)uw=yu(1w)+vw=1u2+v2xvvwuw=yu+uw+vw=1u2+v2xvw(v+u)=yu+w(u+v)=1(vu)(v+u)x=vw(v+u)(vu)(v+u) and y=uw(u+v)(vu)(v+u)x=v(vu)(v+u)wvu   and   y=u(vu)(v+u)wuv
  3. Hence, the value of x is v(vu)(v+u)wvu and the value of y is u(vu)(v+u)wuv.

You can reuse this answer
Creative Commons License