What is the area of an equilateral triangle with a side of R cmR cm?
Answer:
R2√34 cm2R2√34 cm2
- As per Heron's formula, the area of a triangle with sides a,ba,b and cc and perimeter 2S=√S(S−a)(S−b)(S−c)2S=√S(S−a)(S−b)(S−c)
- Here, a=b=c=Ra=b=c=R and S=32×a=3R2.S=32×a=3R2.
- Therefore, Area =√3R2×(3R2−R)×(3R2−R)×(3R2−R)=√3R2×R2×R2×R2=R2√34cm2